ASOBEK at SemEval-2016 Task 1: Sentence Representation with Character N-gram Embeddings for Semantic Textual Similarity

نویسندگان

  • Asli Eyecioglu
  • Bill Keller
چکیده

A growing body of research has recently been conducted on semantic textual similarity using a variety of neural network models. While recent research focuses on word-based representation for phrases, sentences and even paragraphs, this study considers an alternative approach based on character n-grams. We generate embeddings for character n-grams using a continuous-bag-of-n-grams neural network model. Three different sentence representations based on n-gram embeddings are considered. Results are reported for experiments with bigram, trigram and 4-gram embeddings on the STS Core dataset for SemEval-2016 Task 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UdL at SemEval-2017 Task 1: Semantic Textual Similarity Estimation of English Sentence Pairs Using Regression Model over Pairwise Features

This paper describes the model UdL we proposed to solve the semantic textual similarity task of SemEval 2017 workshop. The track we participated in was estimating the semantics relatedness of a given set of sentence pairs in English. The best run out of three submitted runs of our model achieved a Pearson correlation score of 0.8004 compared to a hidden human annotation of 250 pairs. We used ra...

متن کامل

WOLVESAAR at SemEval-2016 Task 1: Replicating the Success of Monolingual Word Alignment and Neural Embeddings for Semantic Textual Similarity

This paper describes the WOLVESAAR systems that participated in the English Semantic Textual Similarity (STS) task in SemEval2016. We replicated the top systems from the last two editions of the STS task and extended the model using GloVe word embeddings and dense vector space LSTM based sentence representations. We compared the difference in performance of the replicated system and the extende...

متن کامل

FBK HLT-MT at SemEval-2016 Task 1: Cross-lingual Semantic Similarity Measurement Using Quality Estimation Features and Compositional Bilingual Word Embeddings

This paper describes the system by FBK HLTMT for cross-lingual semantic textual similarity measurement. Our approach is based on supervised regression with an ensemble decision tree. In order to assign a semantic similarity score to an input sentence pair, the model combines features collected by state-of-the-art methods in machine translation quality estimation and distance metrics between cro...

متن کامل

Amrita_CEN at SemEval-2016 Task 1: Semantic Relation from Word Embeddings in Higher Dimension

Semantic Textual Similarity measures similarity between pair of texts, even though the similar context is projected using different words. This work attempted to incorporate the context space of the sentence from that sentence alone. It proposes combination of Word2Vec and Non-Negative Matrix Factorization to represent the sentence as context embedding vector in context space. Distance and corr...

متن کامل

UTA DLNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation

In this paper, we propose a deep neural network based natural language processing system for semantic textual similarity prediction. We leverage multi-layer bidirectional LSTM to learn sentence representation. After that, we construct matching features followed by Highway Multilayer Perceptron to make predictions. Experimental results demonstrate that this approach can’t get better results on s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016